Copied to
clipboard

G = S3xC42:C3order 288 = 25·32

Direct product of S3 and C42:C3

direct product, metabelian, soluble, monomial, A-group

Aliases: S3xC42:C3, (C4xC12):4C6, (S3xC42):C3, C42:4(C3xS3), C22.3(S3xA4), (C22xS3).3A4, C3:(C2xC42:C3), (C3xC42:C3):5C2, (C2xC6).3(C2xA4), SmallGroup(288,407)

Series: Derived Chief Lower central Upper central

C1C4xC12 — S3xC42:C3
C1C22C2xC6C4xC12C3xC42:C3 — S3xC42:C3
C4xC12 — S3xC42:C3
C1

Generators and relations for S3xC42:C3
 G = < a,b,c,d,e | a3=b2=c4=d4=e3=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=cd-1, ede-1=c-1d2 >

Subgroups: 354 in 59 conjugacy classes, 12 normal (all characteristic)
C1, C2, C3, C3, C4, C22, C22, S3, S3, C6, C2xC4, C23, C32, Dic3, C12, A4, D6, C2xC6, C42, C42, C22xC4, C3xS3, C4xS3, C2xDic3, C2xC12, C2xA4, C22xS3, C2xC42, C3xA4, C42:C3, C42:C3, C4xDic3, C4xC12, S3xC2xC4, S3xA4, C2xC42:C3, S3xC42, C3xC42:C3, S3xC42:C3
Quotients: C1, C2, C3, S3, C6, A4, C3xS3, C2xA4, C42:C3, S3xA4, C2xC42:C3, S3xC42:C3

Character table of S3xC42:C3

 class 12A2B2C3A3B3C3D3E4A4B4C4D4E4F4G4H6A6B6C12A12B12C12D
 size 133921616323233339999648486666
ρ1111111111111111111111111    trivial
ρ211-1-1111111111-1-1-1-11-1-11111    linear of order 2
ρ311-1-11ζ3ζ32ζ32ζ31111-1-1-1-11ζ6ζ651111    linear of order 6
ρ411-1-11ζ32ζ3ζ3ζ321111-1-1-1-11ζ65ζ61111    linear of order 6
ρ511111ζ32ζ3ζ3ζ32111111111ζ3ζ321111    linear of order 3
ρ611111ζ3ζ32ζ32ζ3111111111ζ32ζ31111    linear of order 3
ρ72200-122-1-122220000-100-1-1-1-1    orthogonal lifted from S3
ρ82200-1-1+-3-1--3ζ6ζ6522220000-100-1-1-1-1    complex lifted from C3xS3
ρ92200-1-1--3-1+-3ζ65ζ622220000-100-1-1-1-1    complex lifted from C3xS3
ρ10333330000-1-1-1-1-1-1-1-1300-1-1-1-1    orthogonal lifted from A4
ρ1133-3-330000-1-1-1-11111300-1-1-1-1    orthogonal lifted from C2xA4
ρ123-13-130000-1+2i-1-2i11-1+2i-1-2i11-10011-1+2i-1-2i    complex lifted from C42:C3
ρ133-13-13000011-1+2i-1-2i11-1+2i-1-2i-100-1+2i-1-2i11    complex lifted from C42:C3
ρ143-13-130000-1-2i-1+2i11-1-2i-1+2i11-10011-1-2i-1+2i    complex lifted from C42:C3
ρ153-13-13000011-1-2i-1+2i11-1-2i-1+2i-100-1-2i-1+2i11    complex lifted from C42:C3
ρ163-1-3130000-1-2i-1+2i111+2i1-2i-1-1-10011-1-2i-1+2i    complex lifted from C2xC42:C3
ρ173-1-3130000-1+2i-1-2i111-2i1+2i-1-1-10011-1+2i-1-2i    complex lifted from C2xC42:C3
ρ183-1-313000011-1+2i-1-2i-1-11-2i1+2i-100-1+2i-1-2i11    complex lifted from C2xC42:C3
ρ193-1-313000011-1-2i-1+2i-1-11+2i1-2i-100-1-2i-1+2i11    complex lifted from C2xC42:C3
ρ206600-30000-2-2-2-20000-3001111    orthogonal lifted from S3xA4
ρ216-200-30000-2+4i-2-4i220000100-1-11-2i1+2i    complex faithful
ρ226-200-3000022-2+4i-2-4i00001001-2i1+2i-1-1    complex faithful
ρ236-200-3000022-2-4i-2+4i00001001+2i1-2i-1-1    complex faithful
ρ246-200-30000-2-4i-2+4i220000100-1-11+2i1-2i    complex faithful

Smallest permutation representation of S3xC42:C3
On 36 points
Generators in S36
(1 6 8)(2 7 11)(3 12 10)(4 5 9)(13 33 28)(14 34 25)(15 35 26)(16 36 27)(17 21 30)(18 22 31)(19 23 32)(20 24 29)
(1 6)(3 10)(4 9)(7 11)(13 33)(14 34)(15 35)(16 36)(17 30)(18 31)(19 32)(20 29)
(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 9 7 10)(2 12 8 5)(3 6 4 11)(13 14 15 16)(17 19)(18 20)(21 23)(22 24)(25 26 27 28)(29 31)(30 32)(33 34 35 36)
(1 29 14)(2 22 27)(3 17 33)(4 19 35)(5 23 26)(6 20 34)(7 31 16)(8 24 25)(9 32 15)(10 30 13)(11 18 36)(12 21 28)

G:=sub<Sym(36)| (1,6,8)(2,7,11)(3,12,10)(4,5,9)(13,33,28)(14,34,25)(15,35,26)(16,36,27)(17,21,30)(18,22,31)(19,23,32)(20,24,29), (1,6)(3,10)(4,9)(7,11)(13,33)(14,34)(15,35)(16,36)(17,30)(18,31)(19,32)(20,29), (13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,9,7,10)(2,12,8,5)(3,6,4,11)(13,14,15,16)(17,19)(18,20)(21,23)(22,24)(25,26,27,28)(29,31)(30,32)(33,34,35,36), (1,29,14)(2,22,27)(3,17,33)(4,19,35)(5,23,26)(6,20,34)(7,31,16)(8,24,25)(9,32,15)(10,30,13)(11,18,36)(12,21,28)>;

G:=Group( (1,6,8)(2,7,11)(3,12,10)(4,5,9)(13,33,28)(14,34,25)(15,35,26)(16,36,27)(17,21,30)(18,22,31)(19,23,32)(20,24,29), (1,6)(3,10)(4,9)(7,11)(13,33)(14,34)(15,35)(16,36)(17,30)(18,31)(19,32)(20,29), (13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,9,7,10)(2,12,8,5)(3,6,4,11)(13,14,15,16)(17,19)(18,20)(21,23)(22,24)(25,26,27,28)(29,31)(30,32)(33,34,35,36), (1,29,14)(2,22,27)(3,17,33)(4,19,35)(5,23,26)(6,20,34)(7,31,16)(8,24,25)(9,32,15)(10,30,13)(11,18,36)(12,21,28) );

G=PermutationGroup([[(1,6,8),(2,7,11),(3,12,10),(4,5,9),(13,33,28),(14,34,25),(15,35,26),(16,36,27),(17,21,30),(18,22,31),(19,23,32),(20,24,29)], [(1,6),(3,10),(4,9),(7,11),(13,33),(14,34),(15,35),(16,36),(17,30),(18,31),(19,32),(20,29)], [(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,9,7,10),(2,12,8,5),(3,6,4,11),(13,14,15,16),(17,19),(18,20),(21,23),(22,24),(25,26,27,28),(29,31),(30,32),(33,34,35,36)], [(1,29,14),(2,22,27),(3,17,33),(4,19,35),(5,23,26),(6,20,34),(7,31,16),(8,24,25),(9,32,15),(10,30,13),(11,18,36),(12,21,28)]])

Matrix representation of S3xC42:C3 in GL5(F13)

012000
112000
00100
00010
00001
,
01000
10000
00100
00010
00001
,
10000
01000
00525
00080
00001
,
10000
01000
00590
000120
00005
,
10000
01000
00900
00001
0011104

G:=sub<GL(5,GF(13))| [0,1,0,0,0,12,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,5,0,0,0,0,2,8,0,0,0,5,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,5,0,0,0,0,9,12,0,0,0,0,0,5],[1,0,0,0,0,0,1,0,0,0,0,0,9,0,11,0,0,0,0,10,0,0,0,1,4] >;

S3xC42:C3 in GAP, Magma, Sage, TeX

S_3\times C_4^2\rtimes C_3
% in TeX

G:=Group("S3xC4^2:C3");
// GroupNames label

G:=SmallGroup(288,407);
// by ID

G=gap.SmallGroup(288,407);
# by ID

G:=PCGroup([7,-2,-3,-2,2,-3,-2,2,198,772,2110,360,1684,3036,5305]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^4=d^4=e^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c*d^-1,e*d*e^-1=c^-1*d^2>;
// generators/relations

Export

Character table of S3xC42:C3 in TeX

׿
x
:
Z
F
o
wr
Q
<